
Region Identification The internal and 
external border of the subcutaneous fat 
layer  are  identified  using  Active 
Contours  [4].  This  deformable  model 
uses  a  formulation  exploiting  the 
intensity  homogeneities  of  fat  tissue 
voxels present after the preprocessing 
(Figure 5). 

The  subcutaneous  fat  layer  is 
anatomically  partitioned  by  Scarpa’s 
fascia.  The  fascia  is  located  by 
applying  Dynamic  Programming  on  a 
spatial  transformation  of  the  image 
(Figure 6). 

Results 
Labels  and  regions  are  combined 
(Figure 7) and the fat percentages can 
be computed. The segmentations were 

subject to visual inspection. 
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Fat Segmentation in Abdominal MR-Scans 

Introduction 

Obesity, particularly abdominal obesity, 
is associated with an increased risk of 
insulin resistance and type 2 diabetes. 
In  the  context  of  measuring  fat 
percentages,  Kelley  et  al.  [1]  have 
shown the relevance of  distinguishing 
between  visceral,  deep  subcutaneous 
and superficial  subcutaneous fat.  This 
poster  presents  an  automatic  method 
for such a segmentation performed on 
3D T1-weighted MRI of both male and 
female humans. The work was done in 
collaboration  with  Steno  Diabetes 
Center, Copenhagen. 

Methods 
Preprocessing MRI is often corrupted 
by  a  non-anatomic  variability  within 
same-tissue  intensity  over  the  image 
domain.  This  bias  field  must  be 
estimated  and  removed  prior  to 
segmentation.  The  effect  is  observed 
as  the  variation  in  intensities  of  two 
classes of  voxels sampled across the 
abdomen  (Figure  1).  By  fitting  a  3D 
Thin  Plate  Spline  [2]  to  the 
observations,  the  effect  can  be 
estimated  and  removed  for  each 
individual patient (Figures 2 and 3). 

Fat  Tissue  Identification  Voxels  are 
labeled  with  respect  to  intensity, 
adopting  unsupervised  classification. 
Fuzzy  C-Means  Clustering  [3]  is 
applied  to  derive  membership  values 
(Figure 4) subject to tissue labeling by  
thresholding. 
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Figure 1: A slice of 3D MRI. Red and green points mark voxels 
sampled from the two classes (fat tissue and high water content). 

Figure 2: The bias field effect estimated by fitting the 3D Thin 
Plate Spline to the intensities. 

Figure  3:  Preprocessed  image  after  removing  bias  field.  Fat 
tissue voxel intensities are now more homogeneous. 

Figure  5:  Red  and  magenta  lines  mark  borders  of  the 
subcutaneous fat layer, identified with Active Contours. Blue line 
shows  Scarpa’s  fascia,  found  using  Dynamic  Programming 
(Figure 6). 

Figure 6: Locating Scarpa’s fascia. Left: Spatial image 
transformation – the fat layer is unfolded by sampling 
spokes anticlockwise outwards from the center. Right: 
Red  line  shows  resulting  fat  layer  partition  on  the 
transformed image. 

Figure 7: Resulting segmentation. Red; visceral fat. Yellow and 
light blue; deep and superficial subcutaneous fat. Dark blue; air 
and non-fat tissue. 

Figure  4:  Membership  values  derived  using  Fuzzy  C-Means 
Clustering.  Dark  red  indicates  high  membership  of  fat  tissue 
class. 


