

Cheap and Dirty Irradiance Volumes
for Real-Time Dynamic Scenes

Rune Vendler

Agenda

• Introduction

• What are irradiance volumes?

• Dynamic irradiance volumes using
iterative flow

• Mapping the algorithm to modern GPUs

• Ideas and extensions

Introduction

• Worked professionally with real-time
graphics for about 12 years
– Interactivision, Lionhead, VGC

• Interest is primarily pragmatic
– As long as we can deliver beautiful images at

a steady framerate and with reasonable
development cost, nothing else really matters

Part I:
What are irradiance volumes?

• Irradiance samples and volumes

• Examples from games

An irradiance sample

• A single irradiance sample...
– Stores incoming light for a

particular point in space
• I.e. the light that flows through this

point

– Is often parameterised by
direction

• I.e. We can ask: how much light
comes from that direction

• Stored in e.g. an environment
map or spherical harmonics

Irradiance volumes

• With a set of samples,
we can approximate a
volume
– We can look up any point

by interpolating the actual
samples

• Many ways to compute
samples
– Often time consuming to

compute, but trivial to
access afterwards

Examples from games

• Quake 3: Ambient/directional color, direction
• Half-Life 2: ”Ambient cube” – 6 ambient colors
• Little Big Planet: Diffuse color (view-aligned volumes)

Different goals, different solutions!

Part II:
Dynamic irradiance volumes

• Basic idea

• 2D proof-of-concept

• 3D implementation
– Bare bones
– Dynamic objects

Problem domain

• Goals
– Dynamic environment
– Dynamic lighting

– Must encapsulate all lighting in the scene

• Constraints
– World changing slowly
– Relatively small environment
– No programmable GPU

• Must run on a Nintendo Wii, i.e. relatively slow CPU + fixed
function GPU

Iterative flow

• Fundamental idea:
– Spread the work across many frames

• Simulate light moving through the scene interatively, rather
than instantaneously

– With each interation, the result should converge on
• A stable state...

• ...that looks good

– Simplest possible representation:
• Regular grid, either solid or open space
• How light is this cell: no directional information

– Each iteration flows light one cell

One iteration

• Transform volume V to V’
– All reads from V and companion data, all writes to V’

• For each cell C, to calculate light L
– Gather light:

• If C is soild space, L = 0
• else L = average of neighbor cells

– (up+down+left+right)/4 – or diagonals too

– Emit light
• If cell is emitter, L += emitted light

One-hour 2D proof-of-concept
demo

It’s a blur

• The core algorithm is just a blur algorithm
– Blur kernel area must be small enough to

never sample the wrong side of a wall

• Then we force solid space to 0,
and add light where we want emitters

• Needs high dynamic range to carry light
any real distance

Extending to 3D

• Trivial extensions
– 3D grid, 3D blur kernel, trilinear lookup

• Other
– Taking normals into consideration
– Sampling the volume

– Handling dynamic objects
– Fractional occlusion

Taking normals into consideration

• We need to derive directional information somehow
• Intuition: comparing two cells next to each other:

– If A is brighter than B, that suggests light is flowing from A to B

• Now, take two samples: at surface, Ss, and at
surface+normal, Sn
– Grad = Sn – Ss

– Light = Ss + F * Grad

– F = fudge factor

Sampling the volume

• We need to sample the volume and store
the results for rendering somewhere
– Vertex colors
– Lightmaps

• Alternatively, we can sample the volume
per pixel while rendering
– Volume must be accessible from GPU
– Requires a bit of programmability

Handling dynamic objects

• For dynamic objects, this kind of detailed
sampling might not be possible
– Too expensive
– Not compatible with hardware

• Instead, we reconstruct the lighting environment
around the object, and represent it somehow
that the fixed function hardware likes
– Fixed function lights!

• Let’s surround the object with directional lights
that represent the light environment

Fractional occlusion

• Occlusion doesn’t have to be binary
– I.e. 0% or 100% light gets through

• We can occlude (darken) by any
percentage we like

• Can potentially be used to express semi-
occluded space
– Dynamic objects
– Transparent scenery

Speed

• Interesting aspects:
– Cost is linear in the number of cells

• I.e. Size of space

– Cost is constant in the number of lights
• We can represent big area lights by just sticking in

lots of lights in cells next to each other

– Most (if not all) operations are really simple
• No branches necessary

Demo!

Part III:
Mapping to modern hardware

• Sampling the volume

• Moving the blur to the GPU

• Improvements and variations
– Directional component on occlusion
– Light scratchpad
– Combining with direct lighting

Sampling the volume

• Sample in pixel shader
– Need access to world position and normal

– No need to differentiate between static and
dynamic objects

• Trivial to stick the volume in a 3D texture,
but this might not be the best choice

Moving the blur to the GPU

• Volume as render target
• Can’t render to 3D texture

– Instead, we’ll store the 3D
texture as slices on a 2D
texture

– In the shader, we convert
from 3d coordinates to 2d
coordinates on the texture

• Light and occlusion stored
in other textures, or added
in another pass
– E.g. as point primitives

Directional component on occlusion

• Instead of a single occlusion
value, we can store one per axis
– This changes the blur kernel per

pixel, but allows more directional
control over the light flow

• Find coverage e.g. through
rasterisation

Left – Right Front – Back Top - Bottom

Light scratchpad

• View the volume as a 3D scratchpad for
light in the scene
– Write anything you want into it

• Can be kept as a separate map that is
created from scratch every frame

Combining with direct lighting

• Light scene with traditional direct
lights/shadows, then add in contribution
from irradiance volume

• Instead of putting discrete lights into the
irradiance volume, add every surface and
its light to the volume
– I.e. every surface casts light based on what it

received from the direct lighting
– Effectively allows light to ”bounce”

Getting away from cubes

• The cubes are really
only the occlusion
representation of the
scene

• Many looks lend
themselves well to cube-
based occlusion,
especially for indirect
lighting

Conclusion

• There are many ways to make use of
irradiance volumes
– It’s yet another good tool in the toolbox
– Know your problem domain!

• Thanks!
– Kasper Høy Nielsen, IO Interactive
– Alex Evans, Media Molecule

Questions?

rune@vendlergc.com

