Estimation of complex motions in video signals

Erhardt Barth

Institute for Neuro- and Bioinformatics University of Lübeck, Germany

LOCOMOTOR

INB

LOcal adaptive estimation of COmplex MOTion and ORientation patterns

Nonlinear analysis of multidimensional signals:

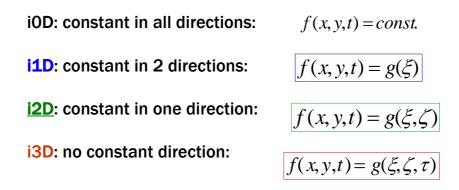
LOCOMOTOR

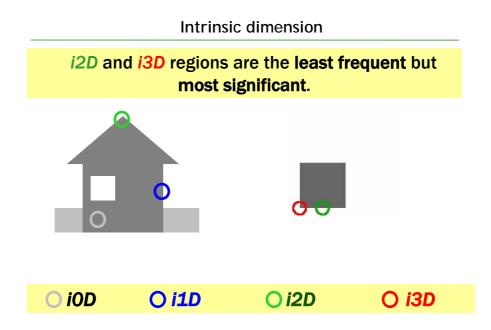
Im DFG Schwerpunkt 1114: "Mathematical methods for time series analysis and digital image processing" <u>http://www.math.uni-bremen.de/zetem/DFG-Schwerpunkt/</u>

Lübeck

Project Ba-1176/7

Intrinsic dimension in 3D





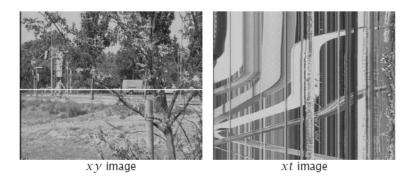
The classical motion model

f(x,y,t) image-sequence intensity

 $\mathbf{v} = (v_1, v_2)^{\mathrm{T}}$ motion vector

$$\alpha(\mathbf{v})\mathbf{f} = v_I \frac{\partial}{\partial \mathbf{x}} \mathbf{f} + v_2 \frac{\partial}{\partial \mathbf{y}} \mathbf{f} + \frac{\partial}{\partial \mathbf{t}} \mathbf{f} = \mathbf{V} \cdot \nabla \mathbf{f} = \mathbf{0}$$

Why complex motions?



Basic problems with natural image sequences: multiple motions, occlusions, noisy data, features at different scales, ...

Transparent motions

Movie (top) and xt plot (below).

Motion model for transparent motions

Optical flow for one motion

f(x,y,t) image sequence, $\mathbf{v} = (v_1, v_2)^T$ motion vector

$$\alpha(\mathbf{v})\mathbf{f} = v_1 \frac{\partial}{\partial \mathbf{x}} \mathbf{f} + v_2 \frac{\partial}{\partial \mathbf{y}} \mathbf{f} + \frac{\partial}{\partial \mathbf{t}} \mathbf{f} = \mathbf{V} \cdot \nabla \mathbf{f} = \mathbf{0}$$

with the derivative operator: $\alpha(v) = v_1 \frac{\partial}{\partial x} + v_2 \frac{\partial}{\partial y} + \frac{\partial}{\partial t}$

Optical flow for *N* motions: $f = g_1(x-\mathbf{v}_1t)+...+g_N(x-\mathbf{v}_Nt)$

$$\alpha(v_1)\alpha(v_2)\ldots\alpha(v_N)f=0$$

Mixed-motion parameters

Example for two motions **u**, **v** : $f(\mathbf{x},t) = g_1(\mathbf{x}-\mathbf{v} t) + g_2(\mathbf{x}-\mathbf{u} t)$

$$\alpha(\mathbf{v})\alpha(\mathbf{u})f = u_1 v_1 f_{xx} + u_2 v_2 f_{yy} + (u_1 v_2 + u_2 v_1) f_{xy} + (u_1 + v_1) f_{xt} + (u_2 + v_2) f_{yt} + f_{tt}$$

We define the mixed-motion parameters as:

$$c_{xx} = v_1 u_1$$
 $c_{yy} = v_2 u_2$ $c_{xy} = u_1 v_2 + u_2 v_1$
 $c_{xt} = u_1 + v_1$ $c_{yt} = u_2 + v_2$ $c_{tt} = 1$

Solving for the mixed-motion parameters

With the *mixed-motion parameters* we obtain:

The above constraint can be used in a number of ways to derive the mixed motion parameters in V from f, e.g. by defining the generalized structure

tensor
$$J_N V = 0$$
 and solving the system $J_N = h * L^T L$
e.g. $V_i \propto (M_{im}, -M_{i(m-l)}, ..., (-1)^m M_{i1})$ $M_{ij}, i = 1, ..., m$
are the minors of J_N

Separation of the mixed-motion parameters

We interpret the motion vectors ${\bf u}$ and ${\bf v}$ as complex numbers

$$(\mathbf{v} = v_1 + i v_2, \mathbf{u} = u_1 + i u_2)$$
 and observe that
 $\mathbf{u} \ \mathbf{v} = \mathbf{A}_0 = \mathbf{c}_{xx} - \mathbf{c}_{yy} + i \mathbf{c}_{xy}$
 $\mathbf{u} + \mathbf{v} = \mathbf{A}_1 = \mathbf{c}_{xt} + i \mathbf{c}_{yt}$

 A_0 and A_1 are homogeneous symmetrical functions of the coordinates **u** and **v** and therefore by Vieta's rule the coefficient of the complex polynomial

$$Q(z) = (z - u)(z - v) = z^2 - A_1 z + A_0$$
 th
rc

that has the complex roots \mathbf{u} and \mathbf{v} .

In case of N motions

$$Q(z) = z^{N} - A_{N-1}z^{N-1} + \dots + (-1)^{N}A_{0}$$

Fourier analysis of multiple transparent motions

Continuous time	$\mathbf{f}(\mathbf{x},t) = \mathbf{g}_1(\mathbf{x}-t\mathbf{u}) + \mathbf{g}_2(\mathbf{x}-t\mathbf{v})$
	$\Leftrightarrow \alpha(\mathbf{u})\alpha(\mathbf{v})\mathbf{f} = 0$
	$\Leftrightarrow \mathbf{F} = G_1 \delta(\mathbf{u} \cdot \boldsymbol{\omega} + \boldsymbol{\omega}_t) + G_2 \delta(\mathbf{v} \cdot \boldsymbol{\omega} + \boldsymbol{\omega}_t)$

Discrete time

$$\mathbf{f}_{k}(\mathbf{x}) = \mathbf{g}_{1}(\mathbf{x} - k\Delta t\mathbf{u}) + \mathbf{g}_{2}(\mathbf{x} - k\Delta t\mathbf{v})$$
$$\Leftrightarrow \mathbf{F}_{k}(\boldsymbol{\omega}) = \phi_{1}^{k}G_{1}(\boldsymbol{\omega}) + \phi_{2}^{k}G_{2}(\boldsymbol{\omega})$$

$$\alpha(\mathbf{u}) = \mathbf{u} \cdot \nabla + \frac{\partial}{\partial t} \qquad \mathbf{\phi}_1 = \mathbf{e}^{-\mathbf{j}\mathbf{u}\cdot\boldsymbol{\omega}}$$

$$\mathbf{F}_{k}(\omega) = \phi_{1}^{k} G_{1}(\omega) + \phi_{2}^{k} G_{2}(\omega)$$

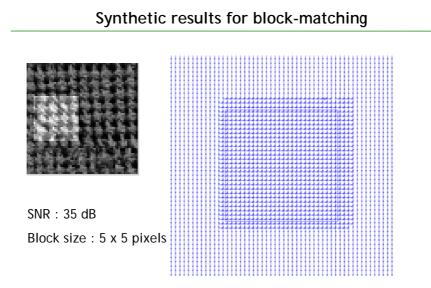
Layer elimination

$$\mathbf{F}_{2}(\boldsymbol{\omega}) - a_{1}\mathbf{F}_{1}(\boldsymbol{\omega}) + a_{2}\mathbf{F}_{0}(\boldsymbol{\omega}) = \mathbf{0}$$
$$a_{1} = \phi_{1} + \phi_{2} \quad a_{2} = \phi_{1}\phi_{2}$$

Block-matching constraint

Back to space domain

$$f_2(x) - f_1(x-u) - f_1(x-v) + f_0(x-u-v) = 0$$



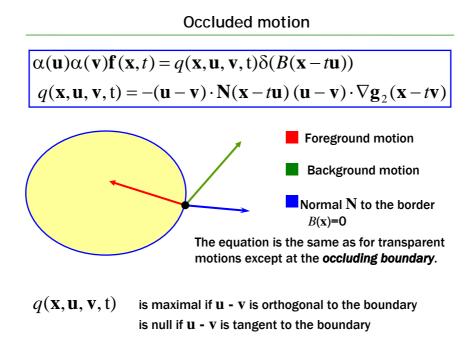
$$\mathbf{f}(\mathbf{x},t) = \chi(\mathbf{x}-t\mathbf{u})\mathbf{g}_1(\mathbf{x}-t\mathbf{u}) + \overline{\chi}(\mathbf{x}-t\mathbf{u})\mathbf{g}_2(\mathbf{x}-t\mathbf{v})$$

- $\boldsymbol{g}_1(\boldsymbol{x}) \quad \text{occluding object}$
- ${f g}_2({f x})$ occluded object
- $\boldsymbol{\chi}$ characteristic function of the occluding object

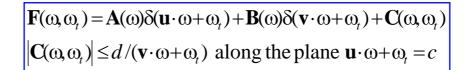
$$\overline{\chi} = 1 - \chi$$

How does the Fourier transform of $\mathbf{f}(\mathbf{x},t)$ deviate from the two motion planes?

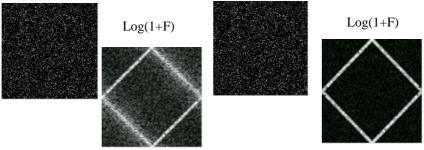
$$\alpha(\mathbf{u})\alpha(\mathbf{v})\mathbf{f}(\mathbf{x},t)$$
?



Occluded motion in the Fourier domain



The distortion C has hyperbolic decay



The hyperbolic decay of $\rm C\,$ has been first recognized by Beauchemin at al. for the particular case of straight line boundary

References

C. Mota, I. Stuke, <u>T.</u> Aach, and <u>E. Barth</u>: Spatio-temporal motion estimation for transparency and occlusions. Signal Processing: Image Communication. Elsevier Science, 2005.

C. Mota, I. Stuke, <u>T. Aach</u>, and <u>E. Barth</u>: Divide-and-Conquer Strategies for Estimating Multiple Transparent Motions. In: Proceedings of the 1st International Workshop on Complex Motion, Schloss Reisensburg, Germany. Lecture Notes on Computer Science, LNCS Vol. 3417, 2005.

C. Mota, I. Stuke, <u>T. Aach</u>, and <u>E. Barth</u>: Estimation of multiple orientations at corners and junctions. In: 26th Pattern Recognition Symposium (DAGM'04), Tübingen, 163-170, 2004.

C. Mota, <u>T. Aach</u>, I. Stuke, and <u>E. Barth</u>: Estimation of multiple orientations in multi-dimensional signals. In: IEEE International Conference on Image Processing, 2665-2668, 2004.

I. Stuke, <u>T. Aach, E. Barth</u>, and C. Mota: *Multiple-motion-estimation by block-matching using MRF*. International Journal of Computer & Information Science, Vol. 5, No. 2, pp. 141-152, 2004.

I. Stuke, <u>T. Aach, E. Barth</u>, and C. Mota: *Multiple-motion estimation by block-matching using Markov random fields*. In: International Journal of Computer & Information Science, Vol. 5, No. 2, pp. 141 - 152, June 2004.

<u>E. Barth</u>, I. Stuke, <u>T. Aach</u>, and C. Mota: Spatio-Temporal Motion Estimation for Transparency and Occlusions.In: Proceedings of IEEE International Conference on Image Processing (ICIP 03), Barcelona, Spain, September 14-17, 2003, Vol. III, pp. 69-72.

E. Barth, I. Stuke, and <u>C. Mota: Analysis of motion and curvature in image sequences</u> (invited paper). In: Proc. of the 5th IEEE Southwest Symposium on Image Analysis and Interpretation, 206-210, 2002.

C. Mota, I. Stuke, and E. Barth: Analytic Solutions for Multiple Motions. In: Proceedings of the IEEE International Conference on Image Processing (ICIP 01), Thessaloniki, Greece, October 7-10, 2001, Vol. II, pp. 917-920.