


Challenges in interactive rendering

* Generating realistic images interactively is hard

 Many dimensions of complexity
— Geometric complexity
— Material complexity
— Meso-scale complexity
— Lighting complexity
— Transport complexity
— Synergy
* This talk focuses on techniques that enable more
lighting/transport complexity



Material Complexity

* Models how light interacts
with a surface

— Assume the “structure” of the
material is below the visible
scale

— Simple variation
e Twist maps




Meso-Scale Complexity

e Variations at a visible scale
- not geometry
— Bump/Roughness maps

— Parallax Mapping/BTF's
extreme examples of this




Lighting Complexity

* What kind of lighting
environment is an object in?

Directional/point lights
Directional + ambient
“Smooth” (low frequency)
lighting

Completely general
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Transport Complexity

 How light interacts with
objects/scene at a visible
scale

— Shadows
— Inter-reflections
— Caustics

— Translucency (subsurface
scattering)
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Precomputed Radiance Transfer (PRT)

 Models an object/scenes response to lighting expressed in
a given basis
— Can model arbitrary transport complexity

* Factors things into two steps

— Off-line transport simulation that is independent of specific
lighting environment

— Simple run time component that depends on specific lighting
environment



General Scene Response
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Neumann Expansion
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Neumann Expansion

Direct lighting arriving at point p — from distant environment
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Spherical Harmonics

Can be used to represent signals over the sphere
— General form is for complex signals, real form used for graphics

Analogous to the Fourier basis

Can be expressed as trigonometric functions of theta/phi
— Mostly just useful for derivations, computing analytic formulas

Also represented as polynomials of coordinates of a point
on the unit sphere
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SH Properties

* Basis functions are orthogonal
— Integrate against themselves = 1
— Integrate against other SH=0
— Makes projecting functions/signals simple

* Rotation invariance
— Project(Rot(f)) = Rot(Project(f))

— No aliasing as an object rotates, or lights rotate around an ojbect
(ie: lights don't “wobble”)

* Band limiting

— Capture finer and finer frequencies as you add more terms (also
helps with aliasing)



Spherical Harmonics




Precomputed Radiance Transfer (PRT)
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Precomputed Radiance Transfer (PRT)

Compute objects response to a given number “light basis
functions” off-line
— Include arbitrarily complex light transport

At run time rotate lighting into frame of the object

Dot product of transfer vector and lighting vector
generates exit radiance

Limitations
— Assumes rigid objects (see LDPRT later)
— Lots of data (compression)
— Distant lighting (see gradients, PRV later)






- General Scene Response




Precomputed Basis

* Polynomial Texture Maps
— [Malzbender2002]
— Bi-quadratic polynomial (2 DOF)
» Steerable I[llumination Textures

— [Ashikhmin2002]
— Steerable basis to model path of small area light (49 DOF)

* Directional Basis

— [Hao02003]

— Subsurface Scattering from directional lights
 Wavelets

— [Ng03]

— Models “all-frequencies”

— Extended to glossy [Liu04,Ng04,Wang(04]
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Angular Sampling Issues
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Sampling Issues: Transport

 Bounced light is pretty much always low frequency
— Anilluminated wall is an area light
— Even from a point (high frequency) light source

Do you need to use high frequency basis to model high
frequency inter-reflections???

— Similar to duality discussed in [Ramamoorthi2001], inter-
reflections are implicitly large area lights



- Compression Goals -y
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_ Static vs. lterative




Related Work

« VQ+PCA [Kambhatla94] (static)
 VQPCA [Khambhatla97] (iterative)
 Mixture PC [Dony95] (iterative)

* Independently used with BTF's [Mueller03]

* More sophisticated models exist
— [Brand03], [Roweis0?2]
— Mapping to GPUs is challenging
e Variable storage per vertex

 Partitioning is more difficult (or requires more passes)
* Worth investigating again on current GPU'’s — like the Xbox360



Equal Rendering Cost

vQ PCA CPCA
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How Compression Improves Rendering

* Factor, do highlighted portion on the CPU

e, :(Tgp . L)+izljl:vxfp(T(‘:p . L)

* Rendering only depends on number of PCA vectors in a
cluster

* Anything that is “linear” can be optimized this way

— Combination of light maps, significantly reduce compute and
storage, change intensities on the fly




PRT HLSL shader

float4 vAccumR =0, vAccumG = 0, vAccumB = 0;

for (inti=0; i < (NUM_PCA/4); i++)

{
vAccumR += vPCAWeightsl[i] * aConsts[nOffset+1+(NUM_PCA/4)*0+i];
vAccumG += vPCAWeights[i] * aConsts[nOffset+1+(NUM_PCA/4)*1+i];
vAccumB += vPCAWeights[i] * aConsts[nOffset+1+(NUM_PCA/4)*2+i];

; * Very lossy (4 PCA)

- 11 instructions
float4 vDiffuse = aConsts[nOffset]; —  NUM_CLUSTERS * 4 consts
vDiffuse.r += dot(vAccumR,1); —  Tshort4 +1 byte per vertex

 Less lossy (12 PcA)
- 17 instructions
- NUM_CLUSTERS * 10 consts
— 3 short4 + 1 byte per vertex

« DXSDK sample for details

vDiffuse.g += dot(vAccumG,1);
vDiffuse.b += dot(vAccumB,1);
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Why Animating PRT is Hard

* Lighting and Transfer Vector have to be expressed in same
coordinate system
— For rigid objects just rotate the light once
— For skinned characters you could compute rotated lighting at each
bone and blend Rotating SH is expensive
* Trade off accuracy in transfer vector with efficient
rotation...
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Local Deformable PRT

* Functions with circular symmetry around the Z axis project
only into the Zonal Harmonic basis functions
— These are the only class of functions that the SH convolution

theorem can be applied to

* Evaluating basis functions in a direction (projection of a
rotated delta function) generates a rotated form of the
Zonal Harmonic basis functions (due to rotational
invariance of SH)

* Given any circular symmetric function (in Z), rotating is just
evaluating basis functions and scaling by ZH coefficients
for given band



Local Deformable PRT

* Shading normal + coefficient per band
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How Does LDPRT Work?

* Approximates transfer vector as a spherical function that
has circular symmetry (around the shading normal) — zonal
harmonic

* Just application of SH convolution theorem

* |n between irradiance environment maps and PRT

e Shading normal from linear terms (direction of “maximal
visibility”)

* For a given shading normal, ZH coefficients that minimize
squared error can be computed in closed form



Shading Normals




" How to use LDPRT? e







LDPRT Multiple Lobes

* One lobe only can represent circularly symmetric
functions
— Works ok for some textures, not as well for others

* Fit multiple lobes to approximate transfer vector
— More data/reconstruction costs
— Siggraph2005 paper

* Non-linear optimization problem
— Used analytic gradients of objective function and BFGS

— Fairly well behaved, but standard techniques are useful
* [teratively approximate a single lobe, compute residual, repeat
* Multiple starts to avoid local minima
— Any 3 lobe directions that aren’t on a great circle can represent
linears
« >= 3 lobes, just explicitly store (easy to rotate linear)
» 1 specific lobe (used in single lobe case) can represent as well



" LDPRT Rendering =y
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Simple Translucency




Wrinkle Model




Wrinkle Model










Light flowing through space
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- Irradiance Volumes




SH Gradients

 Model “mid range” illumination by using a Taylor
expansion (in space) of projection into SH [Annen2004]

 Thisis a really good idea — fairly inexpensive way to handle
“local” lights

* Using N-gradient directions requires N times more work
— 1 or 2 directional derivatives might make sense

* Also see Chris Oat's (ATI) GDC talk this year

— But use compression!
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PRV Representation

* Use smooth (differentiable) BF so you can easily generate
gradients

* Multi-level uniform quadratic b-splines
— Not very expensive at run time
— C1 continuous (gradients behave better)
— Multi-level enables more aggressive compression

* K-nearest neighbor and radial basis functions also worth
investigating
— Cost/continuity a concern
— Oct-trees used by Chris Oat as well






- Generating a PRV "
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Final Thoughts

+ PRT

— Enables effects that are difficult with traditional techniques
« Soft shadows from large area lights
* Inter-reflections
» Subsurface scattering

— Easy to mix with traditional techniques

« Split techniques based on light frequency (PRT for low, shadow maps
for high)

* Split based on transport path (PRT for indirect lighting, something else
for direct)

— Qutdoor game
* PRT for direct+indirect lighting from “skylight” (minus sun)
* PRT for indirect lighting from sun
* Conventional techniques for direct Llighting from sun



Final Thoughts

 LDPRT

— Can be used for surface details

— Trivial to skin/deform (but shadows in tangent space or rest
configuration)

* PRV

— Tying objects into the lighting used for the scene is a good idea,
and done already in games

— Parameterizing lighting makes sense going forward
* Independent light maps
e QOutdoor lighting (sky light model)
 Compression
— Always use with PRT
— Worth using for other scenarios (multiple light maps in particular)
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