

Challenges in interactive rendering

* Generating realistic images interactively is hard

 Many dimensions of complexity
— Geometric complexity
— Material complexity
— Meso-scale complexity
— Lighting complexity
— Transport complexity
— Synergy
* This talk focuses on techniques that enable more
lighting/transport complexity

Material Complexity

* Models how light interacts
with a surface

— Assume the “structure” of the
material is below the visible
scale

— Simple variation
e Twist maps

Meso-Scale Complexity

e Variations at a visible scale
- not geometry
— Bump/Roughness maps

— Parallax Mapping/BTF's
extreme examples of this

Lighting Complexity

* What kind of lighting
environment is an object in?

Directional/point lights
Directional + ambient
“Smooth” (low frequency)
lighting

Completely general

Lighting Complexity

* What kind of lighting
environment is an object in?

Directional/point lights
Directional + ambient
“Smooth” (low frequency)
lighting

Completely general

* What kind of lighting
environment is an object in?
— Directional/point lights
— Directional + ambient
— “Smooth” (low frequency)
lighting
— Completely general

Lighting Complexity

* What kind of lighting
environment is an object in?

Directional/point lights
Directional + ambient
“Smooth” (low frequency)
lighting

Completely general

Transport Complexity

 How light interacts with
objects/scene at a visible
scale

— Shadows
— Inter-reflections
— Caustics

— Translucency (subsurface
scattering)

- Transport Complexity

 How light interacts with
objects/scene at a visible scale

Shadows
Inter-reflections
Caustics

Translucency (subsurface
scattering)

Transport Complexity

 How light interacts with
objects/scene at a visible scale

— Shadows
— Inter-reflections
— Caustics

— Translucency (subsurface
scattering)

Transport Complexity

 How light interacts with
objects/scene at a visible scale

Shadows
Inter-reflections
Caustics

Translucency (subsurface
scattering)

- Some Of ALl Of This =

Precomputed Radiance Transfer (PRT)

 Models an object/scenes response to lighting expressed in
a given basis
— Can model arbitrary transport complexity

* Factors things into two steps

— Off-line transport simulation that is independent of specific
lighting environment

— Simple run time component that depends on specific lighting
environment

General Scene Response

Rendering Equation

Rendering Equation

Rendering Equation

Rendering Equation

Rendering Equation

Rendering Equation

Rendering Equation

Neumann Expansion

Neumann Expansion

1 s ™ i {
b |] %
£ o i 1 . &

Neumann Expansion

Direct lighting arriving at point p — from distant environment

Neumann Expansion

1 s ™ i {
b |] %
£ o i 1 . &

Neumann Expansion

Neumann Expansion

Neumann Expansion

a el B)
3 | b b
. P B - ¥

Neumann Expansion

Neumann Expansion

Diffuse PRT

Diffuse PRT

Diffuse PRT

Diffuse PRT

Diffuse PRT

" Diffuse PRT e

Diffuse PRT

Diffuse PRT

Diffuse PRT

Diffuse PRT

Diffuse PRT

Diffuse PRT

Diffuse PRT

Spherical Harmonics

Can be used to represent signals over the sphere
— General form is for complex signals, real form used for graphics

Analogous to the Fourier basis

Can be expressed as trigonometric functions of theta/phi
— Mostly just useful for derivations, computing analytic formulas

Also represented as polynomials of coordinates of a point
on the unit sphere

~ Spherical Harmonics

C
&
¢

Zonal Harmonics

¢

%R e

SH Properties

* Basis functions are orthogonal
— Integrate against themselves = 1
— Integrate against other SH=0
— Makes projecting functions/signals simple

* Rotation invariance
— Project(Rot(f)) = Rot(Project(f))

— No aliasing as an object rotates, or lights rotate around an ojbect
(ie: lights don't “wobble”)

* Band limiting

— Capture finer and finer frequencies as you add more terms (also
helps with aliasing)

Spherical Harmonics

Precomputed Radiance Transfer (PRT)

.\ Utd

[]
W -
iluminate - result

— \'

Y

. Transfer
. Vector

Precomputed Radiance Transfer (PRT)

Compute objects response to a given number “light basis
functions” off-line
— Include arbitrarily complex light transport

At run time rotate lighting into frame of the object

Dot product of transfer vector and lighting vector
generates exit radiance

Limitations
— Assumes rigid objects (see LDPRT later)
— Lots of data (compression)
— Distant lighting (see gradients, PRV later)

- General Scene Response

Precomputed Basis

* Polynomial Texture Maps
— [Malzbender2002]
— Bi-quadratic polynomial (2 DOF)
» Steerable I[llumination Textures

— [Ashikhmin2002]
— Steerable basis to model path of small area light (49 DOF)

* Directional Basis

— [Hao02003]

— Subsurface Scattering from directional lights
 Wavelets

— [Ng03]

— Models “all-frequencies”

— Extended to glossy [Liu04,Ng04,Wang(04]

| SpatialSamplng Issues -y

| SpatialSamplng Issues -y

Angular Sampling Issues

Angular Sampling Issues

- Sampling Issues “

Sampling Issues: Transport

 Bounced light is pretty much always low frequency
— Anilluminated wall is an area light
— Even from a point (high frequency) light source

Do you need to use high frequency basis to model high
frequency inter-reflections???

— Similar to duality discussed in [Ramamoorthi2001], inter-
reflections are implicitly large area lights

- Compression Goals -y

Compression Example '

Compression Example '

_ Static vs. lterative

Related Work

« VQ+PCA [Kambhatla94] (static)
 VQPCA [Khambhatla97] (iterative)
 Mixture PC [Dony95] (iterative)

* Independently used with BTF's [Mueller03]

* More sophisticated models exist
— [Brand03], [Roweis0?2]
— Mapping to GPUs is challenging
e Variable storage per vertex

 Partitioning is more difficult (or requires more passes)
* Worth investigating again on current GPU'’s — like the Xbox360

Equal Rendering Cost

vQ PCA CPCA

- How Compression Improves Rendering

How Compression Improves Rendering

* Factor, do highlighted portion on the CPU

e, :(Tgp . L)+izljl:vxfp(T(‘:p . L)

* Rendering only depends on number of PCA vectors in a
cluster

* Anything that is “linear” can be optimized this way

— Combination of light maps, significantly reduce compute and
storage, change intensities on the fly

PRT HLSL shader

float4 vAccumR =0, vAccumG = 0, vAccumB = 0;

for (inti=0; i < (NUM_PCA/4); i++)

{
vAccumR += vPCAWeightsl[i] * aConsts[nOffset+1+(NUM_PCA/4)*0+i];
vAccumG += vPCAWeights[i] * aConsts[nOffset+1+(NUM_PCA/4)*1+i];
vAccumB += vPCAWeights[i] * aConsts[nOffset+1+(NUM_PCA/4)*2+i];

; * Very lossy (4 PCA)

- 11 instructions
float4 vDiffuse = aConsts[nOffset]; — NUM_CLUSTERS * 4 consts
vDiffuse.r += dot(vAccumR,1); — Tshort4 +1 byte per vertex

 Less lossy (12 PcA)
- 17 instructions
- NUM_CLUSTERS * 10 consts
— 3 short4 + 1 byte per vertex

« DXSDK sample for details

vDiffuse.g += dot(vAccumG,1);
vDiffuse.b += dot(vAccumB,1);

- What isaTrasfer Vector? ” '

Why Animating PRT is Hard

* Lighting and Transfer Vector have to be expressed in same
coordinate system
— For rigid objects just rotate the light once
— For skinned characters you could compute rotated lighting at each
bone and blend Rotating SH is expensive
* Trade off accuracy in transfer vector with efficient
rotation...

- Local Deformable PRT “ '

Local Deformable PRT

* Functions with circular symmetry around the Z axis project
only into the Zonal Harmonic basis functions
— These are the only class of functions that the SH convolution

theorem can be applied to

* Evaluating basis functions in a direction (projection of a
rotated delta function) generates a rotated form of the
Zonal Harmonic basis functions (due to rotational
invariance of SH)

* Given any circular symmetric function (in Z), rotating is just
evaluating basis functions and scaling by ZH coefficients
for given band

Local Deformable PRT

* Shading normal + coefficient per band

o EEEC @
][]]

E EEE_EN

H EEEEN

How Does LDPRT Work?

* Approximates transfer vector as a spherical function that
has circular symmetry (around the shading normal) — zonal
harmonic

* Just application of SH convolution theorem

* |n between irradiance environment maps and PRT

e Shading normal from linear terms (direction of “maximal
visibility”)

* For a given shading normal, ZH coefficients that minimize
squared error can be computed in closed form

Shading Normals

" How to use LDPRT? e

LDPRT Multiple Lobes

* One lobe only can represent circularly symmetric
functions
— Works ok for some textures, not as well for others

* Fit multiple lobes to approximate transfer vector
— More data/reconstruction costs
— Siggraph2005 paper

* Non-linear optimization problem
— Used analytic gradients of objective function and BFGS

— Fairly well behaved, but standard techniques are useful
* [teratively approximate a single lobe, compute residual, repeat
* Multiple starts to avoid local minima
— Any 3 lobe directions that aren’t on a great circle can represent
linears
« >= 3 lobes, just explicitly store (easy to rotate linear)
» 1 specific lobe (used in single lobe case) can represent as well

" LDPRT Rendering =y

- Parameterized Models ”

Simple Translucency

Wrinkle Model

Wrinkle Model

Light flowing through space

- Representations for Lightin '

- Irradiance Volumes

SH Gradients

 Model “mid range” illumination by using a Taylor
expansion (in space) of projection into SH [Annen2004]

 Thisis a really good idea — fairly inexpensive way to handle
“local” lights

* Using N-gradient directions requires N times more work
— 1 or 2 directional derivatives might make sense

* Also see Chris Oat's (ATI) GDC talk this year

— But use compression!

- Parameterized Radiance Volumes

- Parameterized Radiance Volumes

PRV Representation

* Use smooth (differentiable) BF so you can easily generate
gradients

* Multi-level uniform quadratic b-splines
— Not very expensive at run time
— C1 continuous (gradients behave better)
— Multi-level enables more aggressive compression

* K-nearest neighbor and radial basis functions also worth
investigating
— Cost/continuity a concern
— Oct-trees used by Chris Oat as well

- Generating a PRV "

- PRV Optimizations '

Final Thoughts

+ PRT

— Enables effects that are difficult with traditional techniques
« Soft shadows from large area lights
* Inter-reflections
» Subsurface scattering

— Easy to mix with traditional techniques

« Split techniques based on light frequency (PRT for low, shadow maps
for high)

* Split based on transport path (PRT for indirect lighting, something else
for direct)

— Qutdoor game
* PRT for direct+indirect lighting from “skylight” (minus sun)
* PRT for indirect lighting from sun
* Conventional techniques for direct Llighting from sun

Final Thoughts

 LDPRT

— Can be used for surface details

— Trivial to skin/deform (but shadows in tangent space or rest
configuration)

* PRV

— Tying objects into the lighting used for the scene is a good idea,
and done already in games

— Parameterizing lighting makes sense going forward
* Independent light maps
e QOutdoor lighting (sky light model)
 Compression
— Always use with PRT
— Worth using for other scenarios (multiple light maps in particular)

Acknowledgments

