

The Architecture of the Kapow
Systems Engine

by
Jacob Marner, M.Sc.
Architecture Manager

Deadline Games

What is Kapow Systems?

• Production tool for making games
– A sand box

• Cross platform run-time system
– Supports PC, Xbox and PlayStation 2

• Box of tools for making game
– No game specific components

• Was used to create Total Overdose

Key Features

• Integrated editor

• Fragments

• Entity type Database

• Memory management system

• Cross platform asset generation

• TNT script language

Layered Architecture

Libs

Kernel

Editor

Plugins

Main

Adapter (The
hardware

abstraction layer)
Toolbox Math Freetype Multistream

Asset system Entity database
Scene graph

classes
Collision system Script system

Editor system

Editor library zlib Photon mapper
Memory
Manager

Expat

Animation
system

Mockup system Particle systems Path finding Physics

Kapow Engine
class

Entity type Database

• Run time type information (RTTI) system

• Used for multiple purposes:
– Automatic GUI generation
– Saving and loading scenes / fragments
– Script interface

– Saved games
– Rewind system
– Later: Undo in editor

Entity type Database, cont.
class Model : public Node {

...

void Register() {

tModel = new EntityType("Model");

tModel->InheritFrom(tNode);

tModel->SetCreator((CREATOR)Create);

...

tModel->RegisterProperty(
"hard_alpha_factor", tNUMBER,
FLOAT_GETTER(Model::GetHardAlphaFactor),
FLOAT_SETTER(Model::SetHardAlphaFactor),
"control=slider|min=0|max=1");

...

}

...

};

Asset Generation

3D Max model
(.max file)

<<becomes>> XML file (.model
file)

Editor

<<slow load>>
Native file

(.model_pc)

<<auto-generates>>

Native file
(.model_pc)

First use of asset after change of original version (in editor)

Subsequent uses (in editor)

Editor

<<fast load>>

Asset path for Asset block generation

Editor
<<generates>>

Asset block (e.g.
a .map file)

Release build Asset path

Asset block (e.g.
a .map file)

Release run-
time system

<<fast load>>

Memory Management

• Consoles have no virtual memory!
Fragmentation is a big problem.

• We segment memory and make a seperate
allocator for each:
– Frame based allocator for game levels
– First fit allocator for small temporary things
– Best fit allocator with flushing for renderlists.
– Best fit allocator with defragmenting support for script

objects.
– The system malloc() for the rest.

Questions?

jobs@deadlinegames.com

