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What is Kapow Systems?

• Production tool for making games
– A sand box

• Cross platform run-time system
– Supports PC, Xbox and PlayStation 2

• Box of tools for making game
– No game specific components

• Was used to create Total Overdose



  

Key Features

• Integrated editor

• Fragments

• Entity type Database 

• Memory management system

• Cross platform asset generation

• TNT script language
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Entity type Database

• Run time type information (RTTI) system

• Used for multiple purposes:
– Automatic GUI generation
– Saving and loading scenes / fragments
– Script interface

– Saved games
– Rewind system
– Later: Undo in editor



  

Entity type Database, cont.
class Model : public Node {

...

void Register() {

tModel = new EntityType("Model");

tModel->InheritFrom(tNode);

tModel->SetCreator((CREATOR)Create);

...

tModel->RegisterProperty( 
"hard_alpha_factor", tNUMBER, 
FLOAT_GETTER(Model::GetHardAlphaFactor), 
FLOAT_SETTER(Model::SetHardAlphaFactor),  
"control=slider|min=0|max=1"); 

...

}

...

};



  

Asset Generation
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Memory Management

• Consoles have no virtual memory! 
Fragmentation is a big problem.

• We segment memory and make a seperate 
allocator for each:
– Frame based allocator for game levels
– First fit allocator for small temporary things
– Best fit allocator with flushing for renderlists.
– Best fit allocator with defragmenting support for script 

objects.
– The system malloc() for the rest. 



  

Questions?

jobs@deadlinegames.com


