

Stable, Robust, and Versatile Multibody Dynamics Animation

Kenny Erleben

Department of Computer Science

University of Copenhagen

The Problem

Large scale (today ≥ 1000 objects).

DIKU

- **Dense** \Rightarrow more difficult.
- Random looks OK if top-most objects OK.
- More sparse \Rightarrow less dependent constraints \equiv faster convergence.

Notice: Dense \Rightarrow more dependent constraints.

- **Stable** \Rightarrow Handling Physical Unstable and III-posed.
- Robust \Rightarrow Handling Degenerate and Faulty Cases.
- The Attack of The Malicious User!

My Solution

5

DIKU

Ingredients to achieve high-performance:

- Velocity-based complementarity formulations.
- Leap-frog like time-stepping scheme.
- Iterative LCP solver.
- Error-correction by projection.
- Shock-propagation, followed by a smoothing correction phase.

Complementarity Formulation

From physics

DIKU

Normal force repulsive ($\lambda_1 \ge 0$).

Normal force zero at separation ($\lambda_1 = 0$).

If bodies are moving apart

$$w_1 = J_{\mathsf{row}_1} \vec{u} > 0 \Rightarrow \lambda_1 = 0, \tag{1}$$

If bodies are resting

$$\lambda_1 > 0 \Rightarrow w_1 = J_{\mathsf{row}_1} \vec{u} = 0. \tag{2}$$

Either λ_1 is zero and $J_{\text{row}_1} \vec{u}$ is non-zero or vice-versa.

$$w_1 = J_{\mathsf{row}_1} \vec{u} \ge 0$$
 compl. $\lambda_1 \ge 0$ (3)

Complementarity Formulation

Coulomb's Friction Model.

 \bigcirc

DIKU

Dynamic friction:

$$w_2 = J_{\text{row}_2} \vec{u} > 0 \Rightarrow \lambda_2 = -\mu \lambda_1,$$
 (4)

$$w_2 = J_{\text{row}_2} \vec{u} < 0 \Rightarrow \lambda_2 = \mu \lambda_1,$$
 (5)

 $\boldsymbol{\mu}$ is the coefficient of friction.

Static friction:

$$w_2 = J_{\mathsf{row}_2} \vec{u} = 0 \Rightarrow \lambda_2 < \mid \mu \lambda_1 \mid, \quad \text{(6)}$$

Similar constraints for $w_3 = J_{row_3} \vec{u}$ and λ_3 .

Complementarity Formulation

Combine discritization of $\dot{\mathbf{Mu}} = \vec{f}_{\text{ext}} - J^T \vec{\lambda}$ with $\vec{w} = J \vec{u}$

$$\vec{w} = \underbrace{J\mathbf{M}^{-1}J^{T}}_{\mathbf{A}}\Delta t\vec{\lambda} + \underbrace{J\left(\vec{u}\ ^{t} + \Delta t\mathbf{M}^{-1}\vec{f_{\text{ext}}}\right)}_{\vec{b}}$$
$$\vec{w} = \mathbf{A}\vec{\lambda} + \vec{b}$$

Notice

5

DIKU

 \checkmark \vec{w} linear in $\vec{\lambda}$.

Further

$$\lambda_i = \vec{\lambda}_{\mathsf{lo}_i} \Rightarrow \vec{w}_i \ge 0 \tag{8}$$

$$\lambda_i = \vec{\lambda}_{\mathsf{hi}_i} \Rightarrow \vec{w_i} \le 0 \tag{9}$$

$$\vec{\lambda}_{\mathsf{lo}_i} < \lambda_i < \vec{\lambda}_{\mathsf{hi}_i} \Rightarrow \vec{w}_i = 0 \tag{10}$$

A box linear complementarity problem (LCP) problem.

(7)

The Time-Stepping Method

S

DIKU

Brute Force...?

Iterative LCP solver

The splitting

 \mathbf{U}

DIKU

$$\mathbf{A} = \mathbf{L} + \mathbf{D} + \mathbf{U}$$

Iterative Gauss-Seidel

$$\mathbf{A}\vec{\lambda} = -\vec{b} \tag{13}$$

$$\left(\mathbf{L} + \mathbf{D} + \mathbf{U}\right)\vec{\lambda} = -\vec{b} \tag{14}$$

$$\vec{\lambda}^{k+1} = \mathbf{D}^{-1} \left(\mathbf{L} \vec{\lambda}^{k} - \mathbf{U} \vec{\lambda}^{k} - \vec{b} \right)$$
(15)

Loop over all variables $i \in [1..3K]$

$$\vec{\lambda}_{i}^{k+1} = \frac{\left(-\sum_{j=0}^{i-1} \mathbf{L}_{i,j} \vec{\lambda}_{j}^{k+1} - \sum_{j=i+1}^{n-1} \mathbf{U}_{i,j} \vec{\lambda}_{j}^{k} - \vec{b}_{i}\right)}{\mathbf{D}_{i,i}}$$
(16)

$$=\frac{-\mathbf{L}_{\operatorname{row}_{i}}\vec{\lambda}^{k+1}-\mathbf{U}_{\operatorname{row}_{i}}\vec{\lambda}^{k}-\vec{b}_{i}}{\mathbf{D}_{i,i}}.$$
(17)

Superscript = iteration number.

Iterative LCP solver

Upper and lower limits are updated if the *i*'th variable is a friction constraint,

$$(r = i \bmod 3) \neq 0 \Rightarrow \vec{\lambda}_{\mathsf{lo}_i} = -\vec{\lambda}_{\mathsf{hi}_i} = \mu \vec{\lambda}_{i-r}, \tag{18}$$

projection step

$$\vec{\lambda}_{i}^{k+1} = \max\left(\min\left(\vec{\lambda}_{\mathsf{lo}_{i}}, \vec{\lambda}_{i}^{k+1}\right), \vec{\lambda}_{\mathsf{hi}_{i}}\right). \tag{19}$$

Now

DIKU

Each row of the Jacobian have exactly 12 non-zero elements.

M is 3-by-3 block diagonal matrix.

Using a sparse matrix representation for M, J, and A,

Convergence Rate

Convergence rate $\approx O(e^{-kn})$

- More structure (in sense of all-pair dependency) means increasing k, less structure means decreasing k.
- Solution Value of θ has nothing to do with accuracy, when θ is "flat" we got enough accuracy.

Error Correction

 \mathbf{O}

DIKU

Curved surfaces.

Undetected contacts.

Error Correction

A first order world simulation: The equations of motion

$$\vec{F} = m\vec{a}$$
 and $\vec{\tau} = \frac{d\vec{L}}{dt}$ (20)

DIKU

$$\vec{F} = m\vec{v}$$
 and $\vec{\tau} = \mathbf{I}\vec{\omega}$. (21)

Used for error correction, yields the scheme,

given by

$$\mathbf{A} = J\mathbf{M}^{-1}J^T,\tag{23a}$$

$$\vec{\lambda} = \mathbf{lcp}\left(\mathbf{A}, \vec{d_{penetration}}\right),$$
 (23b)

$$\vec{s}^{t+1} = \vec{s}^{t} + \mathbf{S}\mathbf{M}^{-1}J^T\vec{\lambda},$$
(23c)

Shock-Propagation

Stack Height Definition.

5

DIKU

- Bodies are assigned a stack-height number.
- The stack height: #bodies on the closest path to a fixed body.
- Free bodies are assigned the maximum stack-height.

Notice: Stack-height is the path-cost of a breadth-first traversal starting at the fixed bodies.

Shock-Propagation

Stack-Layer Definition:

5

DIKU

- Stack layer *i*: Bodies with stack height *i* and i + 1, contact points between body-pairs
 - with stack height i and i + 1,
 - with stack height i + 1 and i + 1.

Edges are given a stack layer number:

- If stack-heights are equal stack layer number is stack height minus one.
- Otherwise stack layer number is minimum.

The Shock-Propagation algorithm:

DIKU

- Apply an algorithm sequentially to all stack layers.
- Treat stack layers in bottom-to-top order.
- Set bottom-most bodies to fixed before applying, afterwards unfix.

```
shock-propagation(algorithm A)
compute contact graph
for each stack layer in bottom up order
fixate bottom-most objects of layer
apply algorithm A to layer
un-fixate bottom-most objects of layer
next layer
```


Results

4.0 secs.

6.0 secs.

8.0 secs.

2.0 secs.

1.0 secs. Roof and canon-ball.

2.0 secs.

3.0 secs.

4.0 secs.

2.0 secs.

4.0 secs.

6.0 secs.

8.0 secs.

DIKU

- Pentium M, 1.7 GHz, 1GB RAM.
- Time-Stepping is linear in the number of contact points.
- Different slopes are a result of the stacking topology.

Comparisons

Novodex Default

 \bigcirc

DIKU

Novodex 300 Iterations low separation distance

Novodex 30 Iterations, Tweaked Mass, gravity,...

Guendelman et. al. (Siggraph 2003)

Maya

Fatal error...

Performance Comparison