
1

Integrating DirectX
Shaders in 3ds Max
A Developer's Perspective

Neil Hazzard
Software Engineer
Autodesk Media & Entertainment Division

© 2005 Autodesk
Integrating DirectX Shaders in 3ds Max
A Developer's Perspective 2

Overview

•Real time Shaders in 3ds max

•Support for DirectX Effect files

•DirectX Standard Material

•SDK Support for DX Shaders

© 2005 Autodesk
Integrating DirectX Shaders in 3ds Max
A Developer's Perspective 3

Real time Shaders in 3ds max

3ds max 2.0
 First DirectX Release
 DirectX 5.0
 T & L in software

3ds max 3.0
 DirectX 6.0
 Texture Improvements
 Very Similar to max 2.0

© 2005 Autodesk
Integrating DirectX Shaders in 3ds Max
A Developer's Perspective 4

3ds max 4.2
 First DCC tool to support DX8 and HW

shaders
 1122 lines of max code, 41 lines of DX
 Cube Map sample

Real time Shaders in 3ds max

3ds max 5.1
 First DirectX 9 Support
 MetalBump Shader
 DirectX Manager
 650 line of max code, 41 line of DX

© 2005 Autodesk
Integrating DirectX Shaders in 3ds Max
A Developer's Perspective 5

Real time Shaders in 3ds max

3ds max 6.0
 DirectX Effect file support
 0 lines of max code, 41 lines of DX

3ds max 7.0
 DirectX Standard Material
 First to support DXSAS
 0 lines of max code, 0 lines of DX

© 2005 Autodesk
Integrating DirectX Shaders in 3ds Max
A Developer's Perspective 6

Support for DirectX Effect Files

• The DirectX 9 Shader Material supports loading of effect
files.

• Uses custom Semantics and Annotations to support
dynamic UI and custom data binding

• Automatically reloads files that change on disk, so can be
used as part of the shader development cycle

• Full support for 3ds max’s mapping channels including
Vertex Colour, Alpha and Illumination

• Each texture used can have unique mapping coordinate
which can be set from the material’s UI

• Supports a subset of Microsoft’s DxSAS version 0.8
 No full screen effects

• Supports custom effect formats via parser DLLs

© 2005 Autodesk
Integrating DirectX Shaders in 3ds Max
A Developer's Perspective 7

Example Effect File Usage

float bumpHeight
<
 string UIType = "FloatSpinner";

string UIName = "Bump Height";
float UIMin = 0.0f;
float UIMax = 2.0f;

> = { 1.5};

texture TangentMap : NormalMap
<

string name = “Default.dds";
string UIName = "Tangent Space";
int Texcoord = 0;
int MapChannel = 1;

>; Key : Key : Semantic Annotation

© 2005 Autodesk
Integrating DirectX Shaders in 3ds Max
A Developer's Perspective 8

DirectX Standard Material - Overview

•Save Effect File

•Activate

•Dynamic Parameters

•Texture Toggle

•Blinn & Oren-Nayar Blinn
lighting models

© 2005 Autodesk
Integrating DirectX Shaders in 3ds Max
A Developer's Perspective 9

DirectX Standard Material - Details

Uses ATI’s Ashli Technology
 A GPU compiler
 Can convert between HLSL, GLSL and RenderMan
 Compiles to the target platform and language supported

 In 3ds max’s case compiles to PS2.0 and PS2.X
 Queries the card to find the instruction and texture counts supported
 Will use Render To Texture when needed.

Builds an HLSL representation of the Standard Material
 Supports dynamic bindings for the most common Params
 Recompile needed for anything else – e.g Changing the shader model

HLSL is compiled by ASHLI into an DX effect
 Effect is then parsed by the default max parser
 Displayed using similar techniques as the DirectX Material

Code is available in the maxsdk

© 2005 Autodesk
Integrating DirectX Shaders in 3ds Max
A Developer's Perspective 10

SDK Support for
DX Shaders

© 2005 Autodesk
Integrating DirectX Shaders in 3ds Max
A Developer's Perspective 11

Extending the DirectX Standard
Material

Any texture can “inject” HLSL code
This allows custom code to be used to represent non standard or
procedural texture
An example from the SDK is marble.

Texture Maps need to support a new interface called IHLSLTexmap

 bool DoesSupportHLSL();
 void GetTexmapHLSLFunction(TCHAR * code, TCHAR * entryPoint);
 void GetTextureData(TexDataList * list);

© 2005 Autodesk
Integrating DirectX Shaders in 3ds Max
A Developer's Perspective 12

Extending the DirectX Standard
Material
Basic Implementation of GetTexmapHLSLFunction() – full
code in marble.cpp

if(mapOn[0] && subTex[0])
{

_tcscat(HLSL, _T("uniform sampler2D MarbleCol1;\n"));
}
//… lots of HLSL
// then copy it into the buffer
_tcscpy(code,HLSL);
_tcscpy(entryPoint,_T("marblefunc")); // used by compiler

Note the use of “uniform”. This is required by the compiler for
global variables.

© 2005 Autodesk
Integrating DirectX Shaders in 3ds Max
A Developer's Perspective 13

Extending the DirectX Standard
Material
Basic Implementation of GetTextureData () – full code in
marble.cpp

if(mapOn[0]&& subTex[0])
{

TextureData sample1;
_tcscpy(sample1.UIName, _T("MarbleCol1"));
_tcscpy(sample1.SamplerName, _T("MarbleCol1"));
sample1.SubMapNum = 0;
list->Append(1, &sample1);

}

This information is used to create the UI for the effect file

© 2005 Autodesk
Integrating DirectX Shaders in 3ds Max
A Developer's Perspective 14

DirectX Effect System Overview

DirectX Material
Load Effect File

IParserLoader
Get Parser

IEffectParser IRenderMesh

P
ar

se
 F

ile

S
et

 P
ar

am
et

er
s

Lo
ad

 T
ex

tu
re

s

GFX Render
R

en
de

r

Render

© 2005 Autodesk
Integrating DirectX Shaders in 3ds Max
A Developer's Perspective 15

Extending the DirectX Effect Support

New Effect Parsers can be written by Developers.
New Interfaces IEffectParser and EffectDescriptor are available
for use.
 EffectDescriptor:: CreateParser()
 EffectDescriptor::GetParserID()

 IEffectParser::ParseEffectFile()
 IEffectParser::PreRender()
 IEffectParser::Render()

Each parser is a DLL, max ships with 2
 The default max parser and DXSAS 0.8

Effects contains info on what parser to load
 string ParamID = "0x0001"; // DXSAS

© 2005 Autodesk
Integrating DirectX Shaders in 3ds Max
A Developer's Perspective 16

Extending the DirectX Effect Support

IEffectManager

 Used to store parameters that need to be set from 3ds max
 UI Parameters – int, float, Boolean, point4, texture and colour
 Transform data
 Provides access to the parameters via Trackview
 Used to integrate the effect into 3ds max

 Render to texture
 Vertex Paint Modifier

 Access to lighting data
 Position and Direction
 Colour
 Hotspot and Falloff

© 2005 Autodesk
Integrating DirectX Shaders in 3ds Max
A Developer's Perspective 17

Writing your own DirectX shaders

When you need more than max can deliver, you
will need to write your own code.

Two choices, a Material/TextureMap or a DirectX
Manager plugin

Cubemap, LightMap and MetalBump are examples
of a DirectX Manager plugin
DXStdMtl2 is an example of a full material

There is little between them, so its really personal
choice. A DirectX Manager plugin requires the
least amount of actual 3ds max code

© 2005 Autodesk
Integrating DirectX Shaders in 3ds Max
A Developer's Perspective 18

Writing a DirectX Manager Plugin

Create a basic plugin derived from class ReferenceTarget

IDX9DataBridge & IDX9VertexShader Interfaces
 Provides the hooks into 3ds max
 No need to use IDX9PixelShader anymore

 Only needed if 3ds max is drawing the object, which limits the
shader you can use.

 Use IRenderMesh & IRenderMeshCache helper classes
 Creates and renders a D3D compliant mesh
 Creates Normals, UVs andTangent Vectors

 IDX9VertexShader::DrawWireMesh() simply, return true or false
 Tell 3ds max whether you have drawn the mesh or not.

 IDX9DataBridge::GetDXVersion() – return 9.0

Look at MetalBump and Membrane samples found at
Maxsdk\samples\hardwareshaders

© 2005 Autodesk
Integrating DirectX Shaders in 3ds Max
A Developer's Perspective 19

Writing a DirectX Hardware Material

Use all the same interfaces as the DirectX Manager plugin, but
simply derive from class Mtl instead

 SetMtlFlag(MTL_HW_MAT_ENABLED)
 IMtlRender_Compatibility_MtlBase

 Allows you to supply a nice colour icon for material browser!
 Specifies what Software Renderer is supported.

© 2005 Autodesk
Integrating DirectX Shaders in 3ds Max
A Developer's Perspective 20

Tips and Tricks

Use IDirect3DStateBlock9 cautiously
 Max can ask an object to be drawn various times, and this can

be a resource hog.
Do the actual drawing in the IDX9VerterShader::Initialize()
methods
 Simplifies the multi material support

Keep DrawMeshStrips simple – just return True/False
Only support Mesh objects – keeps code simple.
 Use MNMesh::OutToTri()

Use GetCOREInterface()->GetTime(), not TimeValue t = 0
 Prevents unwanted evaluations of the modifier stack

Manage your resources, and RenderStates !!
 3ds max is easy to upset – typically you loose the viewport

names or transparency settings.
 Typically DESTBLEND and SRCBLEND

© 2005 Autodesk
Integrating DirectX Shaders in 3ds Max
A Developer's Perspective 21

3ds max resources

Sparks Support Program
 http://sparks.discreet.com
 Debug builds of max
 Advanced beta exposure
 Knowledge base

Me!!
 neil.hazzard@autodesk.com

© 2005 Autodesk
Integrating DirectX Shaders in 3ds Max
A Developer's Perspective 22

Questions

?

