
OpenTissue
A Low-level OpenSource Physics API

Henrik Dohlmann and Kenny Erleben

Department of Computer Science

Copenhagen University

c© H. Dohlmann and K. Erleben – p. 1/32

OpenTissue

An Open-source Library for Physics-based Animation, released under the terms of
the GNU Lesser General Public License.

A low level application programming interface (API) and a playground for future
technologies in middleware physics for games and surgical simulation.

Developed mainly by the Computer Graphics Group at the Department of
Computer Science, University of Copenhagen.

There is a support/community mailinglist (subscribe by sending an email to
opentissue-request@diku.dk with the subject: “subscribe”).

c© H. Dohlmann and K. Erleben – p. 2/32

Background History of OpenTissue

In November 2001, K. Erleben, H. Dohlmann, J. Sporring, and K. Henriksen
started to collect a toolbox of code pieces

The ambition was to ease project collaboration and teaching efforts.

In the beginning, OpenTissue worked as a playground for experiments

soon it became apparent that the code pieces in OpenTissue were conveniently
reused again and again.

This was the turning point for OpenTissue, and the first thoughts were seeded
towards creating a toolbox for physics-based animation.

Late August 2003 it became clear that students often re-invent the wheel during
their project work, limiting the time set aside for getting a feeling and in-depth
understanding of the simulation methods they work with. OpenTissue thus proved
to be a valuable tool for student projects also, and OpenTissue was released under
the terms of the GNU Lesser General Public License.

Today OpenTissue works as a foundation for research and student projects in
physics-based animation at the Department of Computer Science, University of
Copenhagen (commonly known as DIKU).

c© H. Dohlmann and K. Erleben – p. 3/32

Overview

Rectilinear 3D Grid Data structures and Chan-Vese Segmentation Tools

Twofold Mesh Data Structure and Tetra4 Mesh Data Structure

OpenGL based signed distance map Computations and Voxelizer

Quasi Static Stress-Strain Simulation (FEM)

Relaxation based Particle System Simulation

Dantzig LCP Solver, Path and Lemke wrappers (LCP solvers)

CJK, SAT, VClip

Mesh Plane Clipper and Patcher, QHull Convex Hull wrapper

Script files for Maya and 3DMax

Generic Bounding Volume Hierarchies

Multi-body Dynamics and Volume visualization

Constitutive Elastic Model for deformable objects

And much more

c© H. Dohlmann and K. Erleben – p. 4/32

Benefits and Drawbacks

Benefits

It isFREE to use

Latest technology, research and theory is constantly being added, no hidden
secrets

Common framework

Low-level allows user to play around with the details in the simulation methods

There is mailinglist support

Drawbacks

Low-level requires user to be
Experience programmer

Have minimum knowledge of physics and numerical methods

Many contributors means

It takes time for code to mature

c© H. Dohlmann and K. Erleben – p. 5/32

Future Plans

OpenTissue is currently a little messy, due to many contributors and ad-hoc
extensions, we like to see it mature

We would like to apply a Generic Programming style everywhere in OpenTissue
(Mesh and BVH data structures are up for being refactored)

We are trying to integrate OpenTissue in the Physics Based Animation Graduate
Course at DIKU

More simulation methods will be added in the future (SPH, Cloth etc.)

Full support for KDeveloper on Linux

Anonymeous Access to CVS repository

c© H. Dohlmann and K. Erleben – p. 6/32

Particle Systems (1/8)

To setup a simple particle system, you will first need to instantiate a PS_ParticleSystem
class

#include <OpenTissue/dynamics/particleSystem/ps_particlesystem.h>

PS_ParticleSystem psys;

The particle system needs a numerical integration method

#include <OpenTissue/dynamics/particleSystem/ps_eulerintegrator.h>

#include <OpenTissue/dynamics/particleSystem/ps_verletintegrator.h>

PS_EulerIntegrator euler;

PS_VerletIntegrator verlet;

c© H. Dohlmann and K. Erleben – p. 7/32

Particle Systems (2/8)

In order to make particles move around you need to apply some forces to them

#include <OpenTissue/dynamics/particleSystem/ps_gridforcevectorfield.h>

#include <OpenTissue/dynamics/particleSystem/ps_gravityforce.h>

#include <OpenTissue/dynamics/particleSystem/ps_viscosityforce.h>

PS_GravityForce gravity;

PS_ViscosityForce viscosity;

PS_GridForceVectorField field;

Observe that a force instance represent a force type

c© H. Dohlmann and K. Erleben – p. 8/32

Particle Systems (3/8)

The random force field need a vector map for its initialization

#include <OpenTissue/map/map.h>

OpenTissue::Map<OpenTissue::Vector3> vectorMap;

The map data structure is simply a 3D grid of nodes, each node contains an instance of
the specified template data type. To make the simulation more interesting we will also
add a static half-plane

#include <OpenTissue/dynamics/particleSystem/ps_planegeometry.h>

PS_PlaneGeometry plane;

c© H. Dohlmann and K. Erleben – p. 9/32

Particle Systems (4/8)

The half-plane is initialized by setting its normal and distance to the origin,

plane.plane.d = -5;

plane.plane.n.set(0,1,0);

Gravity and viscosity are initialized by setting the coefficients of gravity and viscosity,

gravity.setGravity(0.98);

viscosity.setViscosity(.5);

c© H. Dohlmann and K. Erleben – p. 10/32

Particle Systems (5/8)

The force field requires a bit more initialization, first we must allocate the map structure,

Vector3 minCoord(-25,-25,-10);

Vector3 maxCoord(25,25,25);

int I = 128;

int J = 128;

int K = 128;

vectorMap.create(minCoord,maxCoord,I,J,K);

The force field class have a few static methods to help initialize the “force grid”,

PS_GridForceVectorField::random(vectorMap,10);

field.init(vectorMap);

c© H. Dohlmann and K. Erleben – p. 11/32

Particle Systems (6/8)

Lastly we need to connect everything to the particle system class

psys.setIntegrator(&verlet);

psys.add(&plane);

psys.add(&field);

psys.add(&gravity);

psys.add(&viscosity);

c© H. Dohlmann and K. Erleben – p. 12/32

Particle Systems (7/8)

In your display method or call-back function you must draw the particle system and the
geometries,

void Application::display(void)

{

glColor3f(0.,0.3,0.);

psys.draw();

glColor3f(0.3,0.3,0.3);

field.draw();

glColor3f(0.,0.,0.3);

plane.draw();

}

c© H. Dohlmann and K. Erleben – p. 13/32

Particle Systems (8/8)

We need to add particles and to ask the particle system to simulate their motion,

void Application::run(void)

{

psys.run(0.01666);

Vector3 p;

p.random(-25,25);

if(p.z<0)

p.z = 0;

psys.birth(p);

}

c© H. Dohlmann and K. Erleben – p. 14/32

Voxelization of Mesh Data (1/3)

The voxelization tool is defined in the header

#include <OpenTissue/map/util/voxelizer.h>

OpenTissue::Voxelizer<float> voxelizer;

The template argument indicates the data type stored in the voxels. The voxel map is
simply a 3D grid, in OpenTissue this is called a map,

#include <OpenTissue/map/map.h>

Map<float> voxels;

The template argument indicates the data type stored in each node of the map.

c© H. Dohlmann and K. Erleben – p. 15/32

Voxelization of Mesh Data (2/3)

We also need to setup a mesh

#include <OpenTissue/mesh/mesh.h>

#include <OpenTissue/mesh/io/defaultMeshIO.h>

Mesh mesh;

DefaultMeshIO io;

io.read("foo.msh",mesh);

Now the mesh object have been setup we need to allocate the voxel map,

Vector3 minCoord, maxCoord;

mesh.getMinMaxCoords(minCoord , maxCoord);

int resolution 20;

int I = ceil(maxCoord.x - minCoord.x / resolution);

int J = ceil(maxCoord.y - minCoord.y / resolution);

int K = ceil(maxCoord.z - minCoord.z / resolution);

voxels.create(minCoord,maxCoord,I,J,K);

c© H. Dohlmann and K. Erleben – p. 16/32

Voxelization of Mesh Data (3/3)

Now we are ready for computing the voxelization

voxelizer.run(mesh,voxels);

Afterwards the voxel map contains the voxels,

for (int k = 0;k < K;++k)

for (int j = 0; j < J; ++j)

for (int i = 0;i < I;++i)

{

bool voxel = voxels.getValue(i,j,k);

if (voxel)

{

//... Do something

}

}

c© H. Dohlmann and K. Erleben – p. 17/32

Distance Fields (1/3)

We will use two new classes, the brute signed distance field class and the binary map io
class

#include <OpenTissue/map/util/bruteSignedDistanceField.h>

#include <OpenTissue/map/io/binaryMapIO.h>

BinaryMapIO<float> mapIO;

BruteSignedDistanceField<float> bruteSignedDistanceField;

The template argument indicates the data type of the signed distance map. We read in
mesh geometry from an ascii file

Vector3 center;

DefaultMeshIO meshIO;

meshIO.read("foo.msh", mesh);

Mesh mesh;

mesh.getCentroid(center);

center.negate();

mesh.translate(center);

c© H. Dohlmann and K. Erleben – p. 18/32

Distance Fields (2/3)

Next we scale the mesh to be within unit cube size

Vector3 minCoord,maxCoord,extent;

mesh.getMinMaxCoords(minCoord, maxCoord);

extent.sub(maxCoord,minCoord);

scalar scale =1./ max(max(extent.x,extent.y),extent.z);

mesh.scale(Vector3(scale,scale,scale));

We allocate a map data structure to contain the signed distance map

mesh.getMinMaxCoords(minCoord, maxCoord);

scalar boxband = 0.2*minCoord.distance(maxCoord);

minCoord.sub(Vector3(boxband, boxband, boxband));

maxCoord.add(Vector3(boxband, boxband, boxband));

Map<float> dist;

int I = ...; int J = ...; int K =

dist.create(minCoord, maxCoord, I, J, K);

c© H. Dohlmann and K. Erleben – p. 19/32

Distance Fields (3/3)

Now we are ready for computing the signed distance field and writing the computed
distance map in binary format

bruteSignedDistanceField.run(mesh, dist);

mapIO.write("goo.map", dist);

c© H. Dohlmann and K. Erleben – p. 20/32

Level-set Segmentation (1/7)

We need two map data structures, one for the segmentation results and one for the
medical image,

Map<OpenTissue::scalar> phi;

Map<unsigned short> U;

Observe that the first map is a scalar map, the last one is a 16 bit voxel map. The
Chan-Vese level set segmentation is declared as follows

#include <OpenTissue/map/util/ChanVese.h>

ChanVese<OpenTissue::scalar,unsigned short> chanVese;

Notice that two template arguments are used

c© H. Dohlmann and K. Erleben – p. 21/32

Level-set Segmentation (2/7)

We also need an iso surface extractor for visualization of the segmentation,

#include <OpenTissue/mc/isoSurfaceExtractor.h>

IsoSurfaceExtractor<OpenTissue::scalar> extractor;

Notice that the template argument. We need a tool for initialization of the scalar maps

#include <OpenTissue/map/util/fillMap.h>

FillMap<OpenTissue::scalar> filler;

c© H. Dohlmann and K. Erleben – p. 22/32

Level-set Segmentation (3/7)

We want a visualization of the 3D medical image,

#include <OpenTissue/map/util/cutViewUtility.h>

CutViewUtility<unsigned short> cutview;

Observe the template argument. The cut-view utility class need three bitmaps

#include <OpenTissue/bitmap/bitmap.h>

Bitmap xcut,ycut,zcut;

int xcutvalue;

int ycutvalue;

int zcutvalue;

c© H. Dohlmann and K. Erleben – p. 23/32

Level-set Segmentation (4/7)

Now we allocate and read in the medial 3D image

Vector3 minCoord(0,0,0);

Vector3 maxCoord(I,J,K);

U.create(minCoord,maxCoord,I,J,K);

RawMapIO<unsigned short> rawIO;

rawIO.read(rawfile,U);

Then we allocate and initialize maps for the segmentation

minCoord.set(-(U.I/2.0),-(U.J/2.0),-(U.K/2.0));

maxCoord.set(U.I/2.0,U.J/2.,U.K/2.);

phi.create(minCoord,maxCoord,U.I,U.J,U.K);

filler.blockify(phi,-100.,100.,5,11);

c© H. Dohlmann and K. Erleben – p. 24/32

Level-set Segmentation (5/7)

Finally we allocate bitmaps for the cutview visualization

xcut.create(U.J,U.K);

ycut.create(U.I,U.K);

zcut.create(U.I,U.J);

c© H. Dohlmann and K. Erleben – p. 25/32

Level-set Segmentation (6/7)

To interact with the application we have added a key-event handler

void Application::key(char action)

{

switch (action)

{

case ’s’:

chanVese.run(phi,U,0.01);

break;

case ’e’:

extractor.run(phi,0);

break;

}

}

c© H. Dohlmann and K. Erleben – p. 26/32

Level-set Segmentation (7/7)

In the display method/call-back function we take care of the visualization

void Application::display(void){

int maxTri = extractor.getNumTriangles();

glBegin(GL_TRIANGLES);

for(int idxTri=0; idxTri<maxTri; ++idxTri){

int idx0 = extractor.getNode0(idxTri);...

GLfloat x0 = extractor.getXcoord(idx0);...

GLfloat nx0 = ...

glNormal3f(nx0, ny0, nz0);glVertex3f(x0,y0,z0);

glNormal3f(nx1, ny1, nz1);glVertex3f(x1,y1,z1);

glNormal3f(nx2, ny2, nz2);glVertex3f(x2,y2,z2);

}

glEnd();

cutview.getViewCutBitmaps(U,xcutvalue,ycutvalue,zcutvalue,xcut,ycut,zcut);

cutview.drawViewCut(U,xcutvalue,ycutvalue,zcutvalue,xcut,ycut,zcut);

};

c© H. Dohlmann and K. Erleben – p. 27/32

Virtual Trackball (1/4)

The virtual trackball is defined in the header

#include <OpenTissue/trackball/Trackball.h>

bool bTrackballModeOn = false;

Trackball trackball;

The transformation given by the Trackball is easily extracted and applied to the current
matrix stack in openGL

void glTrackballMatrix(void){

const Transform & Tmp = trackball.Transformation();

int glindex = 0; GLdouble glmatrix[16];

for (unsigned int col = 0; col < 4; ++col)

for (unsigned int row = 0; row < 4; ++row)

glmatrix[glindex++] = Tmp[row][col];

glMultMatrixd(glmatrix);

};

c© H. Dohlmann and K. Erleben – p. 28/32

Virtual Trackball (2/4)

Tell trackball when dragging is started and stopped

void mouse(int Button, int State, int Xmouse, int Ymouse){

if (bTrackballModeOn){

Real Xnorm = Xmouse;Real Ynorm = Ymouse;

normalize(Xnorm, Ynorm);

trackball.EndDrag(Xnorm, Ynorm);

bTrackballModeOn = false;

}

if (State == GLUT_DOWN){

Real Xnorm = Xmouse;Real Ynorm = Ymouse;

normalize(Xnorm, Ynorm);

trackball.BeginDrag(Xnorm, Ynorm);

bTrackballModeOn = true;

}

glutPostRedisplay();

};

Notice the auxiliary variable to keep track of whether a dragging motion is in progressc© H. Dohlmann and K. Erleben – p. 29/32

Virtual Trackball (3/4)

Also tell the trackball when dragging is being done

void motion(int Xmouse, int Ymouse)

{

if (bTrackballModeOn)

{

Real Xnorm = Xmouse;

Real Ynorm = Ymouse;

normalize(Xnorm, Ynorm);

trackball.Drag(Xnorm, Ynorm);

}

glutPostRedisplay();

};

c© H. Dohlmann and K. Erleben – p. 30/32

Virtual Trackball (4/4)

All that is left is to apply the trackball transformation

void display()

{

glClear(...);

glMatrixMode(GL_MODELVIEW);

glLoadIdentity();

gluLookAt(eyex, eyey, eyez, ...);

glTrackballMatrix();

// Do your own rendering here ...

glFinish();

glutSwapBuffers();

};

c© H. Dohlmann and K. Erleben – p. 31/32

Thanks to our Contributors

A small incomplete list of some of the people who made contributions to the OpenTissue
project includes

Micky K Christensen (DIKU): C++ Operators on Math Classes.

Micky K Christensen (DIKU) and Anders Fleron (DIKU): PUG XML.

Knud Henriksen (DIKU): Trackball.

Henrik Dohlmann (DIKU): RenderTexture, Isosurface Extractor, DeVIL support,
KDE support.

Kenny Erleben (DIKU): Bounding Volume Hierarchies, VClip, GJK, Multibody
Dynamics, Particle System, B-Splines.

Kenny Erleben (DIKU) and Henrik Dohlman (DIKU): Map, Mesh, and TetraMesh
data structures, div. tools and utilities, Finite Element Method (Quasi static stress
strain), Volume Visualization using View Aligned Slabbing with 12 bit
preintegration.

Niels Boldt (DIKU): Gauss Seidel, Particle System Solid Mesh.

Bjarke Jakobsen (IMM, DTU): Brick Volume Render.

c© H. Dohlmann and K. Erleben – p. 32/32

	OpenTissue
	Background History of OpenTissue
	Overview
	Benefits and Drawbacks
	Future Plans
	Particle Systems (1/8)
	Particle Systems (2/8)
	Particle Systems (3/8)
	Particle Systems (4/8)
	Particle Systems (5/8)
	Particle Systems (6/8)
	Particle Systems (7/8)
	Particle Systems (8/8)
	Voxelization of Mesh Data (1/3)
	Voxelization of Mesh Data (2/3)
	Voxelization of Mesh Data (3/3)
	Distance Fields (1/3)
	Distance Fields (2/3)
	Distance Fields (3/3)
	Level-set Segmentation (1/7)
	Level-set Segmentation (2/7)
	Level-set Segmentation (3/7)
	Level-set Segmentation (4/7)
	Level-set Segmentation (5/7)
	Level-set Segmentation (6/7)
	Level-set Segmentation (7/7)
	Virtual Trackball (1/4)
	Virtual Trackball (2/4)
	Virtual Trackball (3/4)
	Virtual Trackball (4/4)
	Thanks to our Contributors

