Selected Recent Research in Computer Graphics at IMM

Andreas Bærentzen, IMM

- Volume Visualization & Manipulation
 - Texture Based Volume Visualization
 - The 3DMed Project
- Shape Representation and Manipulation
 - The angle weighted normal
 - GPU assisted mesh to volume conversion
- Global Illumination
 - Near Real-time Global Illumination

Volume Visualization using 3D textures

Volume Visualization using normals stored in 3D textures and cube mapping

Volume Visualization using 3D textures and fragment programs to compute Phong shading

Volume Visualization using 3D textures and preintegrated slabs.

Volume Visualization of large volumes using bricking

The 3DMed Project

Surgery planning application delveloped in collaboration with DIKU, 3D Lab, and ImageHouse.

Visualization and manipulation of volume data

- Measurements
- Visualization
- Editing
- Segmentation

Angle Weighted Pseudo-Normal

- Given a point P and the closest point C on a smooth surface, the normal N(C) tells us whether P is inside.
- Problem: A triangle mesh has no normals at vertices and edges
- Solution: Use angle weighted normals at vertices and edges

Angle Weighted Pseudo-Normal

- Definition of *angle weighted pseudo normal* at a vertex *c*:
 - For each incident face i
 - Compute normal n_i of face i
 - Compute angle α_i
 - N_{α} += $\alpha_{I} n_{i}$
 - Normalize N_{α}

Voxelization using Depth Peeling

Getting a Mesh back

- Voxelization can be used for remeshing
- Applications: Fixing holes, boolean operations, topological simplification

Before Smoothing

The reconstructed mesh is changed to improve the valencies of the vertices

After Smoothing

And then improved by smoothing

Boolean operations

Global Illumination

We want to do this real-time in Bents

Soft Shadow Method

Aim: To compute the visibility fraction V

Circular light source divided V is calculated from $|\mathbf{cx}|$, $|\mathbf{cx}_o|$, $|\mathbf{cx}_v|$ and $|\mathbf{cx}_p|$) by one straight line

Soft Shadow Results

Photon Mapping for Real-time Applications I

- Photon Mapping is in general too slow for real-time applications
- We have carefully optimized the algorithm and introduced new methods for increased speed:
 - Selective retracing of photons on the CPU
 - Selective update of indirect illumination using the GPU
 - Progressive update of caustic photons on the CPU
 - Selective filtering in image space by using the GPU

Photon Mapping for Real-time Applications II

These slides represent the work of

- Bjark Jakobsen
- Kim Steen Pedersen
- Bent Dalgaard Larsen
- Henrik Aanæs
- Andreas Bærentzen
- Niels Jørgen Christensen