
Wedgelet Compression for AAM 
Trainingset 

Wedgelets
Basically we want to do a multiscale representation of the texture component of the AAM. We 
use wedgelets as the basis for compression as suggested by David Donoho. The wedgelet-
approach involves a very simple template which consists of three basic configurations as shown 
below in fig. 1.

Compression results
Fig. 4. Show the result of compressing an image. Since the basis of the compression is triangular 
and the image is squared the initialization is to split the image into two along the diagonal from 
the upper left corner to the lower right.

Applying it to the AAM
Since the area of application is the training set for the AAM we have to make sure that each 
image is represented in the same way. If we just compress the images individually we get a 
different tree for each image se Fig. 6. This means that the constructed trees must be isomorphic. 
There are several ways to ensure this. The statistical approach is to create the tree-structure for 
the compression for all the images at once. This will also enable us to calculate lambda in eq. 1. 
using cross validation. This would give a plausible result. A second approach is to view the 
problem at hand as a pure graph-matching problem. In terms this means that we could separately 
compress each image and then find the largest isomorphic sub-tree. The last idea is instead of 
just finding the largest isomorphic sub-tree we could, assuming that we define a suitable cost 
function, reshape, grow and collapse branches and nodes find the minimum cost deformation. 
This last approach is very close to the regression approach.

The way it works
When employing the wedgelet basis we are able to embed the composition into a quad-tree 
structure where the nodes inside the tree are of type c template and the leaves are of type a and b. 
We are now able to construct a regression tree which we will fit to the image using the standard 
penalized residual sum of squares se eq. 1. Fig. 3 shows how a result on a binary image might 
look. David Donoho introduced this technique on a dyadic domain, but by using barycentric 
coordinates commonly known from computer graphics we can easily move to a triangulated 
domain and still maintain correspondence through the training set of the AAM.

The first template (name this template a) is just an area represented by its corners and its mean 
value. The second (name this template b) is a wedge, an area represented by its corners, an edge 
and two mean values. The third (name this template c) is actually just a collection of four of the 
two first templates. When using wedgelets we are looking for edges in an image. Since template a 
and c are trivial we have to somehow construct template b. This is done by doing and exhaustive 
search in the domain (se the fig. 2.) to find the edge that minimizes the residual sum of squares 
(RSS) by dividing the domain into to areas with different mean values. These are the 
buildingblocks of the wedgelet compression. 
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Fig. 1. Dyadic basis and triangulated basis.

Fig. 2. Possible edges from one point.
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Eq. 1. Penalized sum of squares

Fig. 3.  Wedgelet representation and corresponding quad-tree.

Compression results using AAM annotation
The following results have been obtained using the annotation for the AAM. This means that we 
have a minimum triangulation of 95 triangles which are compressed individually. A tree-
formulation of this is simply that we have a root with 95 branches. Fig. 5. show the initial 
triangulation and a compressed image and its wire frame. The level of compression is roughly 97%.

Fig. 5.  Left the initial triangulation. Right the 
compressed image that consists of 494 triangles with 
295 wedges. Initial area contains approximatly 
30000 pixels giving a compression of 97%.

Fig. 6. Left four non-isomorphic imag-trees. Right four isomorphic image-trees

Conclusion and discussion
The results show that this kind of intelligent compression can be used with success to compress 
images. Furthermore it keeps a high level of detail in areas with high information and low 
resolution in areas with low information. Further more we get a reduction in noise for free. The 
results so far are very promising.

Future work
We want to implement all three approaches described in the previous section and test them 
against the result achieved by Mikkel B. Stegmann using wavelets. Furthermore it has been 
suggested by Ali Shokoufandeh that by fitting this approach into a certain framework an almost 
complete decompression might be achievable. Finally we want to introduce a region excluder for 
noisy regions and a constraint that favors edges across boundaries.
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