A system for automated screening for

cervical cancer

Medicinsk Visiondag Wednesday, 11. June 2003 Peter Locht, Ph.D., M.Sc. Visible Diagnostics A/S

Outline of presentation

- Why screen at all?
- The Pap test
- Automation
- Competition
- Our approach

Why screen at all?

Cervical cancer statistics

A major killer and global healthcare problem

- Cervical cancer is the second most common cancer among women worldwide.
- In developing countries, cervical cancer is the leading cause of death from cancer.
- Annually, about 370.000 new cases of cervical cancer occur worldwide.
- This cancer kills around 230.000 each year.
- Cervical cancer develops slowly and has a detectable and treatable precursor condition known as dysplasia.
- It can be prevented through screening at-risk women and treating women with precancerous and cancerous lesions.
- The Pap smear test was designed to identify abnormalities and is the most widely used screening test for cervical cancer. It is placed under a microscope and examined by a cytotechnologist for signs of abnormality.
- In many Western countries, cervical cancer screening programs (based on cytology -Pap smears) have reduced cervical cancer incidence and mortality by as much as 90 percent.

The Pap test

The Pap Test

- Developed 50 years ago
- Involves collecting a sample of cells from the cervix
- Smears analysed by cytotechnologist trained to recognise tumour cells
- Test most effective when cervical cancer is at its earliest stage of development

Reading the slides

Reading the slides at the laboratory Normal cells **Abnormal cells**

What do abnormal results mean?

Normal cells

Abnormal cells

Automation

Need for automation

- Primary screening is repetitive, labour intensive, time consuming task subject to errors of interpretation (7-10% abnormal smears missed)
- Quality assurance measures are of limited value
- Shortage of trained cytotechnologists

The market size

The size of the potential market opportunity

A patented technology that helps cervical cancer prevention naturally has a huge market potential. The market size for an automated screening system for detection and classification of Pap smears:

- An estimated 160 million Pap smears are performed annually in the industrialised world.
- Approximately 55 million are done in the USA.

Current clinical management of cervical cancer leads to US health care spending of \$7.6 Billion Annual expenditures

Problems associated with automated image analysis systems

- Segmentation
- Feature extraction (morphometric densitometric, colorimetric, texual and contextual)
- Decision strategy for classification of smears
- Need to meet international standards for automated cervical screening

Competition

Competition

Tripath Imaging

- Colour information is ignored altogether
- Many of the image processing steps are sensitive to noise
- Dependency on a large number of controlling parameters (optimisation difficult)
- Not applicable to high risk groups (now required by FDA)
- NFR at max. 25% (batch dependent)

Our approach

The "Visible Diagnostics" Approach

- 1. Image acquisition
- 2. Colour standardisation and segmentation*
- 3. Nucleus identification and delimitation*
- 4. 'Natural' classification technology*
- 5. Cell measurement
- 6. Slide grading*
- 7. Slide categorisation
- * Patented or patent pending

Colour Standardisation and Segmentation

- Colour standardisation
- Colour segmentation

Nucleus Identification and Delimitation

Left: Image subset, background corrected Center: Same, after color segmentation Right: Same, after nucleus identification and delimitation

'Natural' Classification Technology

- Instance based algorithm: direct reference to expert databases
- Detailed rendering of class boundaries
- Non-adjacent parts of parameter space may belong to the same diagnostic class
- Similarity-based non-metrics

Cell Measurements

 Large number of measurements (ca. 100) on nucleus and cytoplasm:

- Dimensions
- Shape
- Texture and colour
- Optical density
- ◆ Etc.

Technology and system highlights

- Unique colour image and nucleus segmentation technology
- Unique data mining (parameter selection & classification) technology
- High NFR fraction (50+%)
- Results independent of batch context
- Results independent of preparation method

Colour image, raw

Colour Image, background corrected

Sympolic image, colour classified

Symbolic image, nucleus detection

Some numbers

- Resolution: 0.66 micron

- Samples size: 19 mm diameter (314 mm²⁾ or 20 by 55 mm rectangular (1100 mm²)

- Image size: $1300 \times 1030 \times 0.66^2 \times 0.95^2 = 0.53 \text{ mm}^2 \text{ or } 600 \text{ images per sample, alternatively 2075 images per sample$

More numbers

- 1 CPU analyses one ThinPrep (circular smear in 30 minutes)
- Capacity is scalable: 10 CPU's analyse 480 smears per day
- Uncompressed sample data size:
 2.16 Gb (TP) or 7.5 Gb (conventional)

How did we get (t)here?

- 1993, Dimac was founded
- 1998 colour based image analysis of "all" sorts
- 1998-99 NanoScan (EC)
- 1998-2001 Aphrodite (Danish)
- 2001-04 Autoscreen (EC)
- 2003 Venture Capital injected and Visible Diagnostics spun out from Dimac

The Autoscreen project

- Critical evaluation of the CCS System (Visible Diagnostics) which sorts smears into two categories only
 - -- for review (?abnormal)
 - -- not for review (definitely negative)
- Participating centres :UK, Denmark and Italy
- Study involves analysis of 24000 cervical smears It compares results of manual screening with results of automated screening.
- Study meets European Standards for in vitro diagnostic medical devices
- Potential value for primary screening of cervical smears

Select significant attributes for your forecaster

